Topología

Compacidad

- 1. Estudiar, utilizando la definición, si los siguientes subconjuntos de $\mathbb R$ con la topología usual son compactos:
 - a) $A = \{(-1)^n + 1/n \mid n \in \mathbb{N}\}.$
 - b) $B = \mathbb{Q}$.
- 2. Demostrar que [0, 1] no es compacto con la topología de subespacio de la recta de Sorgenfrey.
- 3. Considerar en $\mathbb R$ la topología τ generada por la base

$$\mathcal{B} = \{ (a, b) \mid a < b \} \cup \{ (a, b) \cap \mathbb{Q} \mid a < b \}.$$

Demostrar que [0,1] no es un subconjunto compacto de (\mathbb{R},τ) .

4. Describir los subconjuntos compactos del espacio topológico (\mathbb{R}, τ) donde

$$\tau = \{ U \subset \mathbb{R} \mid \mathbb{R} \setminus U \text{ es numerable} \}.$$

5. Sea X = [-1, 1] con la topología

$$\tau = \{X, \emptyset, [-1, b), (a, 1], (a, b) \mid a < 0 < b\}.$$

Estudiar la compactidad del espacio (X, τ) .

6. Sea X=(0,1) dotado de la topología

$$\tau = \{X, \emptyset\} \cup \{(0, 1 - 1/n) \mid n = 2, 3, \ldots\}.$$

Estudiar la compacidad de los abiertos y de los cerrados de X.

7. Sea X = [-1, 1] dotado de la topología

$$\tau = \{ U \subset X \mid 0 \notin U \text{ o } (-1,1) \subset U \}.$$

Caracterizar los subconjuntos compactos del espacio (X, τ) .

- 8. Sea X un conjunto y τ y τ' dos topologías en X tales que $\tau \subset \tau'$. Razonar la veracidad o falsedad de los siguientes enunciados:
 - a) Si $A \subset X$ es compacto en (X, τ) entonces A es compacto en (X, τ') .
 - b) Si $A \subset X$ es compacto en (X, τ') entonces A es compacto en (X, τ) .
- 9. Razonar la veracidad o falsedad de los siguientes enunciados:
 - a) La unión finita de subconjuntos compactos es compacto.
 - b) La unión arbitraria de compactos es compacto.
 - c) La intersección de una familia arbitraria de compactos es compacto.
- 10. Sea K un subconjunto compacto de \mathbb{R} con la topología usual y $f: \mathbb{R} \longrightarrow \mathbb{R}$ una aplicación continua tal que $f(x) \neq x$ para todo $x \in K$. Demostrar que existe $\varepsilon > 0$ tal que, para todo $x \in K$, $|f(x) x| \ge \varepsilon$.
- 11. Sea X un espacio topológico T_2 . Demostrar que dados dos compactos disjuntos $A, B \subset X$ existen abiertos disjuntos U y V con $A \subset U$ y $B \subset V$.

- 12. Demostrar que los siguientes subespacios de \mathbb{R}^n con la topología usual no son homeomorfos:
 - $a) \mathbb{R}^n y S^n$.
 - b) $B(0,1) \text{ y } \overline{B(0,1)}$.
- 13. Demostrar que si X es un espacio topológico compacto y $A \subset X$ es un subconjunto infinito, entonces A tiene un punto de acumulación.
- 14. Demostrar que si X es compacto y metrizable, toda sucesión de puntos de X contiene una subsucesión convergente.
- 15. Sean $X = \{a, b\}$ con la topología indiscreta e $Y = \mathbb{N}$ con la topología usual. Considerar $Z = X \times Y$ con la topología producto y demostrar que todo subconjunto de Z tiene un punto de acumulación pero Z no es compacto.
- 16. Demostrar que si X es un espacio topológico metrizable. Demostrar las siguientes afirmaciones:
 - a) Si todo subconjunto infinito tiene un punto de acumulación, entonces X es compacto.
 - b) Si toda sucesión tiene una subsucesión convergente, entonces X es compacto.
- 17. Sea X un espacio topológico metrizable. Demostrar que si $\{K_n\}_{n\in\mathbb{N}}$ es una familia de compactos no vacíos tales que $K_n \subset K_{n+1}$, entonces

$$\bigcap_{n\in\mathbb{N}}K_n\neq\emptyset.$$

Indicación: Construir una sucesión (x_n) con $x_n \in K_n$ para cada $n \in \mathbb{N}$.

- 18. Sea X un conjunto y τ y τ' topologías en X. Supongamos que (X,τ) es compacto y T_2 . Demostrar las siguientes afirmaciones:
 - a) Si τ' es estrictamente más fina que τ entonces (X,τ') no es compacto.
 - b) Si τ' es estrictamente menos fina que τ entonces (X,τ') no es T_2 .